Table 4. The effect of behavioural and ecological variables on the correlations between parasite prevalence and male brightness within European genera

<table>
<thead>
<tr>
<th>Ecological variable</th>
<th>Proportion of genera exhibiting variation</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diurnal/nocturnal</td>
<td>0/22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Male nestling care</td>
<td>0/22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diet</td>
<td>4/22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Territoriality/coloniality</td>
<td>4/22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hole/open/ground nesting</td>
<td>7/22</td>
<td>0.759</td>
<td>0.23</td>
</tr>
<tr>
<td>Winter feeding</td>
<td>6/22</td>
<td>1.01</td>
<td>0.16</td>
</tr>
<tr>
<td>Gregariousness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male incubation effort</td>
<td>10/22</td>
<td>1.154</td>
<td>0.13</td>
</tr>
<tr>
<td>Mating system</td>
<td>13/19</td>
<td>0.444</td>
<td>0.33</td>
</tr>
<tr>
<td>Habitat type</td>
<td>12/22</td>
<td>0.128</td>
<td>0.45</td>
</tr>
<tr>
<td>Open/forest habitat</td>
<td>9/22</td>
<td>0.829</td>
<td>0.21</td>
</tr>
</tbody>
</table>

The first four variables could not have an important effect because in all or the large majority of genera they did not vary. For the remaining variables, one-tailed unpaired t-tests were used to compare the magnitude of the differences between parasite prevalence and male brightness in genera exhibiting variation in a variable with those in which there is no variation. In each case there was no significant effect. Open/Forest habitat is a two-category classification of habitats in which only wooded and unwooded habitats are distinguished; habitat type refers to an eight-category classification (after ref. 20). Data on the mating systems of some species within three genera were unavailable and these genera were dropped from the analysis. Abbreviations as in Tables 1 and 2.

Association has arisen many times during the course of evolution. In addition, there is no evidence that any previously suggested correlate of male brightness explains the intra-generic associations. These conclusions are all the more surprising given my methodology and the nature of the data: (1) it might be expected that any associations within genera would be obscured by sampling error because of the small number of species in each genus; (2) the subjectivity of the colour data is likely to introduce variation that will obscure rather than produce associations between brightness and parasite loads (assuming that the colour ratings have been derived independently of knowledge of the parasite loads which is clearly the case for the European data); (3) the measure of a species’ susceptibility to parasite infection is not particularly accurate because I have been unable to calculate the mean parasite burden for each species, and in many cases the species' prevalence measures were based on only a few sampled individuals; and (4) I have ignored other parasite groups, such as viruses and bacteria, which could be involved. But despite all these limitations, the novel prediction by Hamilton and Zuk of a positive association between brightness and parasite prevalence across species is borne out by the comparative data.

Received 23 March; accepted 7 April 1987.

Long-term potentiation of synaptic transmission in the hippocampus induced by a bee venom peptide

E. Cherubini*, Y. Ben Ari*, M. Gho*, J. N. Bidard† and M. Lazdunski†

* INSERM U29, Hôpital de Port-Royal, 123 Bd de Port-Royal, 75014 Paris, France
† Centre de Biochimie du CNRS, Parc Valrose, 0634 Nice Cedex, France

Several neurotoxins have been isolated from bee venom. One of these, the mast cell degranulating peptide (MCD), releases histamine from mast cells and on central administration produces arousal at low concentrations and convulsions at higher doses. These effects are mediated through specific high-affinity binding sites which are concentrated in cortical structures, notably the hippocampus. This structure appears to be the source of changes in the electrocorticogram that follow injections of MCD into the cerebral ventricle, and which induce a quasi-permanent hippocampal theta rhythm in the motionless rat alternating with epileptiform spike waves. We report here that brief application of MCD to the CA1 region of hippocampal slices induces long-term potentiation, that is, a long-lasting increase in the efficacy of synaptic transmission. This potentiation seems to be indistinguishable from the classical LTP produced by trains of high-frequency electrical stimulation and considered to be related in some way to memory. Using binding to synaptosomal membranes and radioimmunoassay techniques, we have also found an endogenous peptide equivalent of MCD in brain extracts. This raises the possibility that a MCD-like peptide may be important in long-term potentiation.

Conventional hippocampal slices were prepared from adult male wistar rats and maintained in vitro (details in ref. 7). Application of MCD (0.5-2 μM) produced a membrane depolarization, often associated with spike discharge (Fig. 1b). MCD (1 μM) produced a depolarization of 12.5 ± 1.28 mV, n = 6 (mean ± s.e.m.). The depolarization started 60 s after MCD application and reached a peak within a few minutes. The membrane potential returned to the control level within 3-5 min of washing with MCD-free solution. The depolarization was usually not associated with a significant change in input resistance; a slight (<10%) increase was observed in two cases. Both tetrodotoxin (TTX) (1 μM) and cobalt (2 mM) completely blocked the depolarization produced by MCD, implying that this effect is synaptically mediated.

MCD consistently produced a long-term potentiation (LTP) of synaptic transmission (n = 6). This was characterized by a progressive increase of the amplitude of the excitatory postsynaptic potential (e.p.s.p.) starting 2-5 min after the wash and reaching a maximum 10-20 min later. Often the facilitated e.p.s.p. reached the spike threshold (Fig. 1c). This enhanced e.p.s.p. lasted for up to 6 h (the longest duration of stable intracellular recordings which was obtained) and even partial recovery was not observed. The enhancement produced by 1 μM
Fig. 1 MCD enhances synaptic transmission in the hippocampus. a, Experimental arrangement: intracellular recordings of the pyramidal cells of CA1 were made with potassium-acetate-containing electrodes; bipolar stimulating electrodes were positioned in stratum radiatum to activate the Schaffer collaterals. The CA1 region was isolated from CA3 by a knife cut to prevent spread of bursting activity from the latter region.

b–e, The effects of MCD in the same neuron. b, Depolarization and spike activity produced by bath application of 1 μM MCD (bar). c, Superimposed digitized chart records of monosynaptic e.p.s.p. before, 1 h and 5 h after MCD. d, Plot of the amplitude of the e.p.s.p. against stimulation intensity before (●) and after (▲) MCD. e, Action potentials directly evoked by intracellular depolarizing pulses before (left) and after (right) MCD. The excitability of the neuron was not evidently changed by the peptide. Upper trace, voltage recordings; lower trace, current recordings. f, V/I curve constructed before (●) and 1 h after (▲) application of MCD. In this and following figures the frequency of stimulation of the Schaffer collaterals was 0.05 Hz.

Methods. MCD was purified according to Taylor et al., and the MCD II fraction was used throughout. The purity of the peptide was improved by an additional step of HPLC purification on C18 columns (10 × 250 mm, 7 μm particle size, Merck). Elution was performed with an acetonitrile-water gradient containing 0.5% trifluoroacetic acid and 0.85% triethylamine. MCD was dissolved in water. Because the peptide is positively charged, plastic and glass tubes were treated with Sigmacoat (Sigma).

of MCD measured in three cases in which spikes were not produced was 259 ± 33% (mean ± s.e.m.). The relationship between the amplitude of the e.p.s.p. and the stimulation intensity was linear before and after application of MCD but the slope of the responses obtained after superfusion of the toxin was considerably increased (Fig. 1d). The minimum dose of MCD required to produce the potentiation was 500 nM, but higher concentrations (1–2 μM) produced larger and more rapid effects. The enhancement of the e.p.s.p. was not associated with changes in membrane resistance or cellular excitability as measured with intracellular current pulses (Fig. 1e–f). Therefore, the potentiation of synaptic transmission produced by MCD, like that induced by electrochemical stimulation, does not seem to involve long-lasting changes in postsynaptic cell excitability.

The long-lasting effects of MCD are not due to the continuous presence of the toxin in the tissue because the effects of MCD on membrane potential and resistance rapidly washed out and a brief (1–3 min) concomitant exposure to TTX or cobalt (2 mM) completely prevented the long-lasting effects of MCD (n = 2). Interestingly, once the potentiation had been induced, brief application of either agent caused only a temporary block of the long-lasting effects (n = 3). This suggests that the potentiating effect of MCD requires synaptic activity.

To examine whether the effects of MCD were due to a fragment of the peptide, we also tested the effects of MCD pre-treated either with chymotrypsin, which does not destroy the MCD peptide, or with trypsin, which does. The long-lasting enhancement of the e.p.s.p. still occurred with the former treatment (n = 2) but not with the latter (n = 3) which confirms the need for the peptide to be intact for activity.

Blockade of Cl−-mediated GABAergic (γ-aminobutyric acid) mediated inhibition does not prevent the development of LTP produced by trains of electrical stimulation. We have therefore examined the effects of MCD in the presence of the GABA antagonist bicuculline. To suppress the synchronous firing which occurs in these conditions, high concentrations of divalent cations were used (6 mM Mg2+ instead of 1.3 mM, and 4 mM Ca2+ instead of 2 mM). MCD (2 μM) induced long-term potentiation of synaptic transmission but not the initial depolarization (Fig. 2; n = 2). We conclude that GABAergic inhibition is not important in the long-lasting enhancement of the e.p.s.p. induced by MCD.

Several mechanisms could account for the enhancement of the e.p.s.p., including an increase in the number of presynaptic fibres excited by the electrical stimulation. To test this possibility we have examined the effects of MCD upon the afferent volleys and the field e.p.s.ps. The curve relating the stimulation intensity and the amplitude of the afferent volley was identical in control conditions and following MCD application (Fig. 3a). On the other hand, there was a significant shift in the input–output
Fig. 2 The enhancement of synaptic transmission by MCD is independent of membrane depolarization. a–c. Same neuron. a. Slice bathed in a solution containing 6 mM Mg$^{2+}$ and 4 mM Ca$^{2+}$ to reduce excitability and bicuculline (30 μM) to block GABAAergic inhibition. MCD (2 μM) was applied for 5 min, only the end of the period of superfusion is represented by the bar. The peptide induces neither a depolarization nor a change in input resistance (as tested by electrotonic potentials induced by hyperpolarizing constant current pulses through the recording electrode). Scale bars: (upper) 10 mV; (lower) 0.25 mV vertical, 1 min horizontal. b. Superimposed digitized chart records of e.p.s.p. evoked before (left) and 2 h after (right) application of MCD. Scale bars: 10 mV vertical; 40 ms horizontal. c. Action potentials evoked by depolarizing current pulses before (left) and 2 h after (right) application of MCD. Scale bars: (upper) 10 mV; (lower) 0.25 mV vertical, 20 ms horizontal.

Fig. 3 a. The enhancement of the field e.p.s.p. produced by MCD is not associated with a change in the afferent volley. The amplitude of the afferent volley is plotted against the intensity of stimulation before (●) and 1 h after (△) MCD (1 μM). b. Same slice as a. Input–output curve before (●) and 1 h after (△) MCD. Electrical stimulation was repeated at this time and 30 min later (■). Each point is the average of five consecutive responses. Inset, typical digitized field e.p.s.p. and afferent volleys obtained in the control conditions and 1 h after MCD application (lower trace). Scale bar, 0.5 mV vertical, 10 ms horizontal. c. Time-course of the enhancement of the field e.p.s.p. produced by 1 μM MCD (bar) in another slice. Each point is the average of five consecutive responses. Electrical tetanus was induced once the MCD effects were maximal (usually 1 h after application). In the first case (see b) the strength of stimulation used to elicit the LTP was reduced by 50% to obtain a field e.p.s.p. similar to the control (pre-drug) conditions. In the second approach (in c) the strength of stimulation was kept constant throughout the experiment.

curve obtained by plotting the amplitude of the afferent volley against the initial slope of the field e.p.s.p. (Fig. 3b). Clearly a given afferent volley produces a larger postsynaptic response after MCD, suggesting that the potentiation of synaptic transmission is not due to an enhancement of presynaptic axon excitability. A similar observation has been reported with electrically-induced LTP.

Therefore the potentiation produced by MCD is strikingly reminiscent of the LTP induced by trains of high-frequency electrical stimulation. To examine this similarity further, trains of electrical stimulation which produce LTP in control slices were applied in MCD-pretreated slices. The trains were found to produce a frequency potentiation lasting 10–15 min (in 4 out of 6 tests) but did not produce a long-lasting enhancement of the e.p.s.p. (Fig. 3c). The fact that the chemically potentiated synapse cannot be further enhanced by electrical stimuli which otherwise produce LTP suggests that the enhancement of synaptic transmission by both procedures may have a common mechanism. To examine further the similarity between MCD-induced long-lasting enhancement of the synaptic transmission and LTP, we tested the effects of D(-)-2-amino-5-phosphonovaleric acid (APV), known to prevent LTP. Application of APV (10–30 μM) before MCD suppressed the enhancement of the e.p.s.p. induced by MCD in three out of four cells tested.

The precise mechanism underlying the action of MCD in the hippocampus is unknown. One possibility is that, like phorbol esters, MCD activates protein kinase C (PKC). Following activation of this sort, K+ channels could be phosphorylated and partly or completely blocked and/or Ca2+ channels activated. Recent studies suggest that phosphorylation of proteins by PKC is important in LTP and that phorbol esters promote long-term potentiation in the hippocampus. Another possibility is that MCD directly blocks or activates ion channels involved in neurotransmitter release in the hippocampus. Another bee venom toxin, apamin, is a selective blocker of one type of neuronal Ca2+-activated K+ channel. Similarly to apamin, for which there is an endogenous equivalent in the central nervous system, we have demonstrated the presence of an endogenous MCD-like activity in mammalian brain (Fig. 4). The endogenous peptide prevents 3H-labelled MCD binding to its synaptosomal receptor and cross-reacts in a radioimmunoassay against MCD. The substance is a peptide that is
Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin

A. Colino* & J. V. Halliwell†

MRC Neuropharmacology Research Group, Department of Pharmacology, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK

The hippocampus receives a dense serotonin-containing innervation from the divisions of the raphe nucleus. Serotonin applied to hippocampal neurons to mimic the action of endogenous transmitter often produces complex and variable responses (see for example ref. 3). Using voltage-clamp methods and new ligands that are selective for subtypes of serotonin receptors, we have been able to clarify the mechanism of serotonin action on CA1 cells in rat hippocampal slices. We describe three distinct actions of serotonin (or 5-HT) on identified K-conductances in these cells. First, it activates a Ca-independent K-current which is responsible for neuronal hyperpolarization and is inhibitory. Second, it simultaneously suppresses the slow Ca-dependent K-conductance that is largely responsible for the accommodation of cell firing in CA1 neurons; this produces a paradoxical increase in neuronal discharge in response to a depolarizing input. Third, serotonin produces a more slowly developing and long-lasting suppression of an intrinsic voltage-dependent K-conductance, I_K (ref. 9), leading to neuronal depolarization and excitation. The hyperpolarizing response is mediated by class 1A serotonin receptors, whereas the other responses are not. Modulation of these different conductances by endogenously released serotonin could therefore change the probability or the duration (or both) of neuronal firing in the mammalian brain in different ways to give inhibitory, excitatory or mixed effects.

Slices were prepared from tissue near the septal or temporal poles of the rat hippocampus, incubated and investigated electrophysiologically as previously described. CA1 neurons were impaled with micropipettes containing 3 M KC1. When serotonin (10–30 µM) was bath-applied in the superfusion medium, most CA1 neurons (92%) initially hyperpolarized and showed a conductance increase that was still present when the potential shift was offset by passing positive current through the recording electrode. These effects started about 90 s after the switch to serotonin-containing medium, reached a peak after about 2–3 min in serotonin and declined 2–3 min following washout (Fig. 1A). Although no difference was noted in the passive membrane properties of neurons in septal hippocampus compared with those in cells from temporal regions, a difference between the two locations in the responses to applied serotonin was detected. Most septal CA1 cells (70%, n = 23) showed a monophasic voltage change whereas the remainder and 65% of temporal cells (n = 40), after the hyperpolarizing phase, showed a rebound depolarization which was either slow to dissipate or failed to recover (Fig. 1A, light panel). Overall 10% of temporal neurons were slowly depolarized by serotonin whereas 22% showed only hyperpolarization. The depolarizations to serotonin were accompanied by a neuronal conductance decrease. Both phases persisted in medium containing 0.5 µM TTX (tetrodotoxin) and in medium containing Cd (100–300 µM) or low Ca plus Mn (2 mM) to block Ca channels. The hyperpolarizing phase was inhibitory and the depolarizing phase excitatory, judged in terms of spontaneous neuronal discharge (Fig. 1A).

When voltage-clamped in TTX-containing medium at near

Received 20 February; accepted 23 April 1987.

* Present address: Departamento de Fisiologia, Facultad de Medicina, Fouseca 2, 37007 Salamanca, Spain.
† To whom correspondence should be addressed: MRC Neuropharmacology Research Group, Department of Pharmacology, University College London, Gower Street, London WC1N 1AX, UK.